INDO Molecular Orbital Interpretation of Thermal Singlet Oxygencomplex Generation by Strained Acetylenes

Katsutoshi Онкиво* and Hiroyuki Sato

Department of Synthetic Chemistry, Faculty of Engineering, Kumamoto University, Kumamoto 860 (Received February 16, 1979)

Synopsis. A three-center interaction between the $(\pi_u)_y$ of strained XC \equiv CX (X \equiv H,F, or OCH₃) and the $(\pi_g)_y$ of 3O_2 separated the two half-occupied π_g MOs of 3O_2 on an energy scale of 428—494 kJ/mol causing spin inversion in 3O_2 . A perepoxide-type 1O_2 -XC \equiv CX intermediate once formed is transformed into a stable dioxetene-type 1O_2 complex from which the free generation of 1O_2 was found to be difficult.


The generation of ${}^{1}O_{2}$ has hitherto been realized by the reaction of sodium hypochlorite and hydrogen peroxide, ${}^{1-3}$) the decomposition of peroxides and ozonides, and ozonides, and the photosensitization or microwave discharge of ${}^{3}O_{2}$. The possibility of thermal ${}^{1}O_{2}$ formation from ${}^{3}O_{2}$ with 3,3,6,6-tetramethyl-1-thia-4-cycloheptyne 1 has recently been reported: 17

The above reaction mechanism, however, remains obscure. Consequently an INDO-MO¹⁸⁾ study of the above reaction process has been conducted using a simple model of the strained acetylene 1, $XC \equiv CX$ (X=H, F, or CH_3O), in order to shorten the computation time.

Results and Discussion

The strained acetylene molecule 1 is characterized by split π MOs, and the spectrophotometrically estimated energy difference between the π MOs is 30.5 kJ/mol at the strained angle (146°) of the acetylene 1 molecule. 17,19) In the case of XC=CX, the energy difference between the π MOs has been estimated to be 170 kJ/mol (X=H), 89.5 kJ/mol (X=F), and 612 kJ/molmol (X=CH₃O) at \(\sum XCC=146^\circ\) using standard geometric parameters. 18) The destabilization of the (π_u)_y MO expanding on the XC≡CX molecular plane $((\pi_{\mathbf{u}})_{\mathbf{y}})$ MO is energetically kept practically constant) is monotonically promoted by widening the strained angle thereby permitting overlap between the s or p AO of X and the p_y AO of C (overlap intergral=0.27 at 146° in HC=CH). Therefore, the deviation of the C-X bond from the linear arrangement in XC≡CX makes the ionization energy of the highest doublyoccupied $(\pi_u)_y$ MO smaller and facilitates electron transfer from the strained acetylene molecule to ³O₂.

In view of the most reactive MOs of the strained acetylene and 3O_2 , *i.e.*, the $(\pi_u)_y$ MO of the former and the π_g MOs of the latter, two distinctive interacting systems (three-center and four-center) may be con-

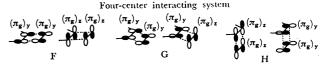


Fig. 1. Three-center and four-center interacting systems of the strained acetylene and 3O_2 .

sidered as the mode of interaction between them (Fig. 1). The formation of a dioxetene-type intermediate from the strained acetylene and ³O₂ via the four-center interacting systems is however thermally forbidden since orbital symmetry in the σ-type orbital correlation such as $(\pi_g)_y - (\pi_g)_y$ or $(\pi_u)_y - (\pi_u)_y$ in the F-type interacting system should be inversely rearranged in the reaction process.20) Therefore, the present thermal generation of ¹O₂ from ³O₂ with the strained acetylene molecule must first pass through the three-center interacting system in which electron transfer from the $(\pi_u)_y$ MO in the acetylene to the $(\pi_g)_y$ (or $(\pi_g)_z$ in the B or C system) of 3O_2 would be expected together with back electron donation from the $(\pi_g)_x$ (and/or $(\pi_u)_x$) of the latter to the $(\pi_g)_y$ (or $(\pi_g)_z$ in the E system) of the former.

The three-center interacting systems of $HC\equiv CH^{-3}O_2$ were calculated utilising the geometric parameters in Table 1 and the relative stabilities of the interacting systems are given in the order: A>B>C>D>E. The one-electron attraction term (E_1) was large and negative in the order of D>A>E>B>C. The interelectronic and internuclear repulsions $(E_{II}$ and E_{IN} respectively) were larger and in the same order. The balance between the nuclear-electron attraction and the above repulsions results in the A-type interacting system being the most plausible mode of interaction.

The approach of the ³O₂ molecule to the strained acetylene in the A-type interacting system is an energy stabilization process and results in a quasi-stable perepoxide-type intermediate 2'. For example, the potential curve for the HC≡CH−³O₂ interacting system shown in Fig. 2, was obtained by optimizing the geometric parameters (see Table 1) by minimizing the total energies of the interacting systems with a repeated SCF-procedure.²¹⁾ As Fig. 2 illustrates, the change of electronic configuration from the triplet-state to the singlet-state interacting system could be expected

Table 1. Relative stabilities of the three-center interacting systems

		$r_{\rm CO}/{ m \AA^{a}}$	roo/Å	θ/deg .	$\phi/{ m deg}$.	$E_{ m I}/{ m a.u.}$	$E_{ m II}/{ m a.u.}$	$E_{\rm N}/{\rm a.u.}$	$E_{ m total}/{ m a.u.}$
H, C	A	2.00	1.15	0	120	-188.7708	84.2764	54.5565	-49.9379
	В	2.00	1.15	30a)	210a)	-186.9356	83.3466	53.6561	-49.9329
	C	2.00	1.14	30a)	180a)	-186.6873	83.1985	53.5591	-49.9297
146° r _{co} 0	D	2.00	1.15	0	90a)	-192.5395	86.1563	56.4551	-49.9281
H _{1,10} A	E	2.00	1.14	90	180a)	187.7066	83.7018	54.0780	-49.9268

a) Fixed values in the calculations.

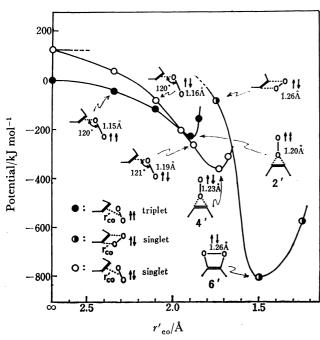


Fig. 2. Potential curves for the interacting system of the strained HC \equiv CH (\angle HCC $=146^{\circ}$) and $^{3}O_{2}$ or $^{1}O_{2}$. (The four-center interacting system of HC \equiv CH $^{-1}O_{2}$ at $r'_{CO}=\infty-1.8$ Å was not treated for shortening computation time.)

before the formation of the above-mentioned tripletstate intermediate 2'. As the distance (r'_{c0}) between the two centers of C-C in HC=CH and O-O in O2 becomes smaller, the highest half-occupied MO formed by $(\pi_u)_y$ (HC\(\exists CH\))- $(\pi_g)_y$ (\(^3O_2\)) is destabilized with respect to the half-occupied MO of $(\pi_g)_y$ (HC≡CH)- $(\pi_g)_x(^3O_2)$. The energy separation between the above two MOs are 194, 303, and 428 kJ/mol at $r'_{co}=2.3$, 2.1, and 1.9 Å respectively. Such a remarkable energy separation between the two half-occupied MOs may result in an electronic rearrangement (viz., electron migration from the $(\pi_g)_y$ MO to the $(\pi_g)_x$ MO in 3O_2 via spin inversion) by changing the triplet-state interacting system into the energetically more stable singletstate system at the intersystem crossing point $(r'_{co} =$ 1.94 Å). In the A-type interacting system of CH₃OC≡ $COCH_3$ (or $FC \equiv C) - {}^3O_2$ ($\angle OCC = \angle FCC = 146^\circ$), the electron-donative (or attractive) nature of CH₃O (or F) resulted in the intersystem crossing at a slightly longer range of $r'_{co} = 1.96 \,\text{Å}$ (or at a slightly shorter range of $r'_{co} = 1.91 \text{ Å}$) with an energy separation between the above-mentioned half-occupied MOs of 485 kJ/mol (or 494 kJ/mol). The strained acetylene-¹O₂ system once formed via spin inversion, then, moves

to a quasi-stable perepoxide-type intermediate 4' (see Fig. 2). The singlet oxygen complex of the intermediate 4', then, transforms into a stable dioxetene 6' (456 kJ/mol lower in potential energy than 4') with an activation energy of 58 kJ/mol. The generation of free ${}^{1}O_{2}$ from the dioxetene-type intermediate 6' however appears difficult because the isolation of free ${}^{1}O_{2}$ from 6' requires 920 kJ/mol (Fig. 2). Therefore, the reaction between ${}^{3}O_{2}$ and strained acetylenes such as 1 generates a dioxetene-type ${}^{1}O_{2}$ complex which thermally transforms into a dione with chemiluminescence (fluorescence). 17)

References

- 1) C. S. Foots, Acc. Chem. Res., 1, 104 (1968).
- 2) C. S. Foots and S. Wexler, J. Am. Chem. Soc., 86, 3879 (1964).
- 3) E. Mckeon and W. A. Waters, J. Chem. Soc., B, 1966, 1040.
- 4) H. H. Wasserman and J. R. Scheffer, J. Am. Chem. Soc., 90, 3073 (1968).
- 5) H. H. Wasserman, J. R. Scheffer, and J. L. Cooper, J. Am. Chem. Soc., **94**, 4991 (1972).
- 6) S. R. Abbott, S. Ness, and O. M. Hercules, J. Am. Chem. Soc., 91, 1128 (1970).
- 7) A. M. Trozzolo and S. R. Fahrenholtz, *Ann. N. Y. Acad. Sci.*, **171**, 61 (1970).
- 8) H. H. Wasserman and D. L. Larsen, J. Chem. Soc., Chem. Commum., 1972, 253.
- 9) R. M. Hurray and H. L. Kaplan, J. Am. Chem. Soc., 90, 537, 4161 (1968); 91, 5358 (1969).
- 10) L. M. Stephenson and D. E. McClure, J. Am. Chem. Soc. 95, 3074 (1973).
- 11) R. M. Murray, W. C. Luman, Jr., and J. W. -P. Lin, J. Am. Chem. Soc., 92, 3205 (1970).
- 12) A. P. Schaap, A. L. Thayer, G. R. Faler, K. Goda, and T. Kimura, J. Am. Chem. Soc., 96, 4025 (1974).
- 13) D. R. Kearns, A. U. Khan, C. K. Duncan, and A. H. Maki, J. Am. Chem. Soc., 91, 1039 (1969).
- 14) I. R. Politzer, G. W. GriHin, and J. L. Laseter, *Chem.-Biol. Interact.*, 3, 73, (1971).
- 15) E. J. Corey and W. C. Taylor, J. Am. Chem. Soc., 86, 3881 (1964).
- 16) S. J. Arnold, M. Kubo, and E. A. Ogryzle, Adv. Chem. Ser., 77, 133 (1968).
- 17) N. J. Turro, V. Ramamurthy, K. -C. Liu, A. Krebs, and R. Kemper, J. Am. Chem. Soc., 98, 6758 (1976).
- 18) J. A. Pople and D. L. Beveridge, "Approximate Molecular Orbital Theory," McGrow-Hill, New York (1970), p. 80.
- 19) H. Schmidt, A. Schweig, and A. Krebs, *Tetrahedron Lett.*, 1974, 1471.
- 20) R. B. Woodward and R. Hoffmann, "The Conservation of Orbital Symmetry," Verlag Chemie, GmbH (1971).
- 21) For instance, see K. Ohkubo, T. Yoshida, and K. Tomiyoshi, Bull. Chem. Soc. Jpn., 49, 2397 (1976).